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ABSTRACT
New degree based graph indices called Kulli-Basava indices were studied their chemical and mathematical
properties which have good response with mean isomer degeneracy. In this paper, we introduce the symmetric
division Kulli-Basava index, first and second Kulli-Gourava indices, general first and second Kulli-Basava
indices, (a, b)-Kulli-Basava index of a graph and exact formulas for regular graphs, wheel, gear, helm graphs.

KEYWORDS: Symmetric division Kulli-Basava index, Kulli-Gourava indices, (a, b)-Kulli-Basava index,
graph.
Mathematics Subject Classification: 05C05, 05C07, 05C12. 05C35.

1. INTRODUCTION
A graph index is a numerical parameter mathematically derived from the graph structure. Several graph indices
have been considered in Mathematical Chemistry, see [1, 2].

Throughout this paper, G is a finite, simple, connected graph. We denote the set of vertices of G by V(G) and
the set of edges of G by E(G). Let ds(v) denote the degree of a vertex v. The degree of an edge e = uv in a graph
G is defined by dg(e) = de(u) + de(v) — 2. Let Se(u) denote the sum of the degrees of all edges incident to a
vertex u. The terms and concepts not given here, we refer [3].

The first and second Kulli-Basava indices were proposed in [4], defined as

KB,(G)= > [S,(W+S,(v)] KB,(G)= > S, (wS,(v).

uveE(G) uveE(G)

The second hyper Kulli-Basava index introduced in [5], defined as

HKB,(G)= 3 [S,(ws, ()]
uweE(G)

The F1-Kulli-Basava index of a graph was proposed by Kulli in [6], defined as
FKB(G)= 3 [s, () +s,(v7]

uveE(G)
In [7], Kulli introduced the product connectivity Kulli-Basava index of a graph G, defined as

1

uVe;(G) ‘,Se (U)Se (V) .

We introduce the symmetric division Kulli-Basava index of a graph G and it is defined as
s s, (v)]

S.(v) S, (u))

We also propose the first and second Kulli-Gourava indices of a graph G and they are defined as

KGO, (G)= > [S,(w+S, (V)+8,(u)s,(v)],

uveE(G)

PKB(G) =

SDKB(G)= " (
ueE(G)

KGO,(G)= > (S, (w+S,(v))s, (u)s, v).

weE(G)
We propose the general first and second Kulli-Basava indices of a graph, defined as
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KB (G)= Y [S.(w+S,(T,

ueE(G)

KB (G)= Y [S,(w)s, (W]
uweE(G)
Based on Kulli-Basava indices, we introduce the (a, b)- Kulli-Basava index and it is defined as

N, (G)= 3 [s, (s, ) +s, WS, ()]
uveE(G)
where a, b are real numbers.

Recently, some variants of Kulli-Basava indices were introduced and studied such as multiplicative F-Kulli
Basava index [8], general Kulli-Basava index [9], multiplicative Kulli-Basava indices [10], multiplicative
product connectivity Kulli-Basava index [11], multiplicative (a, b)-Kulli-Basava index [12].

Recently some new graph indices were studied, for example, in [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

In this paper, the symmetric division Kulli-Basava index, first and second Kulli-Gourava indices, (a, b)-Kulli-
Basava index of regular graphs, wheel, gear, helm graphs are computed.

2. OBSERVATIONS
We observe the following relations between (a, b)-Kulli Basava index with some other Kulli-Basava indices.

KB,(G) =N, o (G).

i)

5 e (G)Z%Nﬂ(e).

i HKB, (G)z%NZ,Z ().

a(g)=1t

" KBZ (G) = > Nya(G).
PKB(G)=1N, ,(G).

V) 2 53

vi SDKB(G)=N; ;(G).

vii) KGO, (G) =N, (G).

viii) FKB(G)=N,, (G).

3. RESULTS FOR REGULAR GRAPHS

Theorem 1. Let G be an r-regular graph with n vertices. Then the (a, b)-Kulli-Basava index of G is given by
a+b
Nap (G)=nrl2r(r-D]". O
nr

Proof: If G is an r-regular graph with n vertices, then G has 2 edges and for any vertex u in G, Se(u) = 2r(r —
1). Therefore

Nop (G = 3 [8, (s, (V) +8, (WS, (v)* ]

uveE(G)
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= %[{Zr(r P {2r(r=D) +{2r (r =D {2r (r —1)}a]

a+b

=nr[2r(r-1)]

We obtain the following results by using Theorem 1 and observations.
nr

Corollary 1.1. Let G be an r-regular graph with n verticesand 2 edges. Then
KB,(G) =Ny (G)=2nr?(r-1).

i)
KBZ(G)=%Nll(G)=2nr3(r—l)2.
i) ’
i HKBZ(G):%NZVZ(G)=8nr5(r—1)4.
iii
" KBS(G)z%Nala(G)zgnr[Zr(r—l)]za.
iv
1 n
PKB(G)==N G)=—.
9 ©) 2 —g,—g( ) 4(r-1)
vi) SDKB(G) = lefl(G) =nr.
viy  KG0:(8)=N;,(G) =8nr* (r-1)°.
Jii) RKB(G) =Ny, (G)=4nr® (r-1)°.
Corollary 1.2. The (a, b)-Kulli-Basava index of a complete graph K is given by

Ny (Ky ) =n(n=D[2(n-(n-2)]"". 2

Proof: Put r = n— 1 in equation (1), we get the desired result.

KBZ

Note 1. We obtain the values of KB1(Kn), KB2(Kn), HKB2(K), (K”), PKB(K:), SDKB(K;), KGO2(Ky),

F1KB(Kn) by using equation (2) and observations.

Corollary 1.3. The (a, b)-Kulli-Basava index of a cycle C, is given by
Nav b (Cn) = 2I’1><4a+b . (3)

Proof: Put r = 2 in equation (1), we obtain the desired result.

We Fi K83 (Cy)
Note 2: We find the values of KB1(C,), KB2(Cy), HKB2(Cy),

1KB(Ch) by using equation (3) and observations.

, PKB(C), SDKB(C,), KGO2(Cy), F

Theorem 2. The first Kulli-Gourava index of an r-regular graph G is given by

KGO, (G)=2nr2(r—1(r? —r +1). @

nr

Proof: Let G be an r-regular graph with n vertices and 2 edges. For any vertex u in G, Se(u) = 2r(r — 1).
Therefore
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KGO (G)= Y [S,(u)+S, (V) +S, (u)S, (V)]
uveE(G)

:%[zr(r_1)+2r(r—1>+2r<f—1>2f“‘1)]

=2nr? (r=D(r? —r+1).
Corollary 2.1. The first Kulli-Gourava index of a complete graph K, is
KGO, (K,)=2n(n-1)?(n-2)(n? ~3n+3).
Proof: Putr =n—1 in equation (4), we get the desired result.

Corollary 2.2. The first Kulli-Gourava index of a cycle C, is
KGO, (Cn ) =24n.

Proof: Put r = 2 equation (4), we obtain the desired result.

4. RESULTS FOR WHEEL GRAPHS
A wheel graph W, is the join of C, and K. Clearly W, has n+1 vertices and 2n edges. A graph W, is shown in
Figure 1. The vertices of Cy, are called rim vertices and the vertex of Ky is called apex.

Figure 1. Wheel graph Wn

In Wi, there two types of edges as follows:
E; = {uv € E(W,) | Se(u) = n+9, Se(v) = n(n+1)}, |E1] =n.
E> = {uv € E(Wh) | Se(u) = Se(v) = n+9}, |E2| =n.

Theorem 3. Let W, be a wheel graph with n+1 vertices and 2n edges. Then the (a, b)-Kulli-Basava index of W,
is

Nao (W, ) =n[ (149 {n(n+D}" +(n+9)° In(n+D}* |+ 2n(n+9)*™.

Proof: From definition and by cardinalities of the edge partition of W,, we derive

Nap (W) = D[ S, (S, (W +5, (W) s, (v)° |

~ B (+9* (4D} +(n+9)° In(n+D}* |+ |E,|[(1+9)* (1+9)° + (n+9)° (n+9)°]
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—n[(n+9* {n(+D}" +(1+9° {(n(1+ D} |+ 2n(n+9)

We find the following results by using Theorem 2 and observations.

Corollary 3.1. Let W, be a wheel graph with n+1 vertices and 2n edges. Then

i)

iii)

iv)

v)

vi)
vii)

viii)

KB, (W, )= Ny o (W, ) =n(n?+4n+27).

KB, (wn):%NLl (W,)=n(n+9)(n? +2n+9).

HKB, (Wn)zéNm(wn)z n(n+9)[n?(n+1?+(n+9)*].

KB§(Wn):%Nava(Wn):n(n+9)a[na(n+1)a+(n+9)a].
1 n n
PKB(W, )==N W, )= L
(W) =3 -;-g( ) Jn(n+D(n+9) n+9
4 3 2
SDKB(Wn):NL_l(Wn)zn +2n° +2n +18n+81+2n.

(n+1)(n+9)
KGO, (W, )=N,; (W,)=n?(n+9)(n+1)(n? +2n+9)+2n(n+9)°.

RKB(W, ) =N, (W, )=n(n®+5n? +55n +243).

Theorem 4. The first Kulli-Gourava index of a wheel graph W, is

KGO, (W, ) =n(n® +12n? +31n+108).

a+b

Proof: Let W, be a wheel graph with n+1 vertices and 2n edges. From definition and by cardinalities of the edge
partition of Wy, we obtain

KGO, (W)= > [Se(W)+S, (v)+S,(u)S, (V)]

uveE(W,)

=[E|[(n+9)+n(n+D+(n+)n(n+D]+|E,|[n+9+n+9+(n+9)(n+9)]

—n(n®+12n? +31n +108).

5. RESULTS FOR GEAR GRAPHS

A graph is a gear graph obtained from W, by adding a vertex between each pair of adjacent rim vertices and it is
denoted by Gn. A graph Gy is shown in Figure 2.
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Figure 2. Geér graph Gn

A gear graph G, has 2n+1 vertices and 3n edges, and it has to types of edges as follows:
E: = {uv € E(Gn) | Se(u) = n(n+1), Se(v) = n+7}, |E4| = n.
Ex ={uv € E(Gy) | Se(u) = n+7, Se(v) = 6}, |E2| = 2n.

Theorem 5. Let G, be a gear graph with 2n + 1 vertices and 3n edges. Then the (a, b)-Kulli-Basava index of a
gear graph Gy is

Nao (Gy)=nL{n(n+D}* (n+ 7 +{n(n+D}" (147 J+2n[(n+7)* 6+ (n+7)° 62 .

Proof: From definition and by cardinalities of the edge partition of G, we deduce

Nap(Gn)= 2. [Se (W)?*s, ()’ +S, (WS, (v)aJ

uveE(G,)

- B +D (07 + i+ D1 (n+ 1) 4B [(n+7)2 60 +(n+7)° 62 ]
[ 4D (4 7° (D (1470 [+ 2n[(n+7)*6° +-(n+7)° 62 .
We establish the following results by using Theorem 5 and observations.

Corollary 5.1. Let G, be a gear graph with 2n +1 vertices and 3n edges. Then
KB, (G, )= Ny (G,)=n®+4n"+33n.

i)
0 KBZ(Gn)zélel(Gn):n(n+7)(n2+2n+12).
1
i HKBZ(Gn):%N2’2(Gn):n(n+7)2[n2(n+1)2+72].
Il
Y KBza(Gn):%Nava(Gn):n(n+7)a[na(n+1)a+2><6a].
v
1 n 2n
PKB(G,)==N ; 1(G,)= .
" (Gn)=3 _g,_g( ") \/n(n+1)(n+7)+\/6(n+7)
B n2(+D?+(n+7)*  n[(n+7)% +36]
g RBC)=NAG) =TT T s
vy KGO:(Gy)=Ny(Gy)= n(n+7)[(n? +2n+7)(n+Dn+12(n+13) .
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FKB(G,)=N,(G,)=n(n*+2n®+4n? +42n +219).

viii)
Theorem 6. The first Kulli-Gourava index of a gear graph G, is given by
KGO, (G, )=n*+9n°+23n° +110n +7.

Proof: From definition and by cardinalities of the edge partition of G, we obtain

KGO, (Gy)= > [Se(uw+S, (V)+S, (s, (V)]

uveE(G,)
=[E|[n(n+D+n+7+n(n+D(n+7)]+|E,|[n+7+6+(n+7)6]
=n*+9n°+23n +110n+7.
6. RESULTS FOR HELM GRAPHS

A helm graph, denoted by Hy, is a graph obtained from a wheel graph W, by attaching an end edge to each rim
vertex. A helm graph Hy is shown in Figure 3.

u

Figure 3. Helm graph Hn

Clearly, a helm graph Hy has 2n+1 vertices and 3n edges. In Hy , there are three types of edges as follows:
E1 = {uv € E(Hn) | Se(u) = n(n+2), Se(v) =n+17},  |[E4l=n.
E> = {uv € E(Hn) | Se(u) = Se(v) = n+17}, |E2|=n.
Es ={uv € E(Hn) | Se(u) = n+17, Se(v) = 3}, |Es| = n.

Theorem 7: Let Hy be a helm graph with 2n+1 vertices and 3n edges. Then the (a, b)-Kulli-Basava index of a
helm graph H, is

Nap (Hp) = n[{n(n L2 (417 +{n(n+2)1" (n +17)a]+2n(n 1) en[(n+17)2 30 + (n+17)°32 .
Proof: From definition and by cardinalities of a helm graph H,, we derive

Nap(Ha)= >, [Se W)?s, ()’ +s, (W)'°s, (v)aJ

uveE(H,)

- &I +2)}* (1417)° +{n(n+2)}" (0 +17)* 4 [E,|[(n+17)% (1+17)° + (n+17)° (n+17)° ]

+|E3|[(n+17)a P 4 (n+7)°3 ]
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a+b

—n[{n(n+ 2 (0+17)° +{n(n+ 21" (n+17)% |+ 2n(n+17)*"® +n[ (n+17)2 2 +(n+17)° 3 |

From Theorem 7 and by using observations, we establish the following results.

Corollary 7.1. Let H, be a helm graph with 2n+1 vertices and 3n edges. Then
KB, (H,)=Nyo(H,)=3n%+4n%+71n.

i)
. KBZ(HH):%NM(Hn)zn(n+17)(n2+3n+20).
1
W HKBZ(Hn):%NZVZ(HH):n(n+17)2[n2(n+2)2+(n+17)2+9].
i
Y KBS‘(Hn)zéNa’a(Hn)zn(n+17)a[na(n+2)a+(n+17)a+3a].
v
1 n n n
PKB(H,)==N ; ; (H,)= -
K (Ha)=3 —3—2( ") s (ne1n) 17 J3(ne1?)

2 2
vi) SDKB(Hn):le_l(Hn):nZ(n+2) +(n+17)

ons n[(n+17)? +9]
(n+2)(n+17) 3(n+17)
viy KGO (Ha) =Ny (Hy)= n2(n+17)(n+2)(n? +3n+17) +2n(n+17)° +3n(n+17)(n + 20).
vy FKB(H) =Ny (Hy )= nln?(n+2)* +(n+17)* ]+ 2n(n+17)* +n[(n +17)? +9]
Theorem 8. The first Kulli-Gourava index of a helm graph Hy is given by

KGO, (H,)=n(n® +21n? + 77n +411).

Proof: From definition and by cardinalities of the edge partition of H, , we derive
KGO (H,)= > [Se(u)+S,(V)+S, (u)S, (V)]

uveE(H,)
=|E]|[n(n+2)+n+17+n(n+2)(n+17)]+|E,|[n+17 +n+17+(n+17)(n+17)]
+|Eg|[n+17+3+(n+17)3]
—n(n®+21n2 +77n+411).
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